Journal of Organometallic Chemistry, 265 (1984) C12–C14 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

FORMATION OF ORGANOMETALLIC COMPLEXES OF PLATINUM(II) AND PLATINUM(IV) IN REACTIONS OF $PtCl_6^{2-}$ WITH ALKANES, OLEFINS AND AROMATICS INDUCED BY γ -IRRADIATION

MIKHAIL V. SERDOBOV, GALINA V. NIZOVA and GEORGIY B. SHUL'PIN* Institute of Chemical Physics, U.S.S.R. Academy of Sciences, 117977 Moscow (U.S.S.R.) (Received January 6th, 1984)

Summary

 γ -Irradiation of solutions of the ion $PtCl_6^{2-}$ and n-hexane (or alkene) in MeCO₂H affords a π -olefin complex of platinum(II); σ -aryl complexes of platinum(IV) are formed in analogous reactions with aromatic compounds.

We wish to report the reactions of the ion $PtCl_6^{2-}$ with various organic compounds induced by γ -irradiation. All the reactions were carried out in MeCO₂H solution using irradiation of a ⁶⁰Co γ -ray source at a nominal dose rate of 6 Mrad h⁻¹.

When a solution of $H_2PtCl_6 \cdot 6H_2O(0.3 \text{ g})$ and n-hexane (2 ml) in MeCO₂H (3.7 ml) was γ -irradiated (132 Mrad) at 50°C a π -hex-1-ene complex of platinum(II) was formed. The complex was isolated in the form π -(hex-1-ene)-PtCl₂py (1) (yield 16.5% based on Pt) after the addition of pyridine (py) and chromatography. The yields of complex 1 were only 1% for a 10 Mrad dose and 2.7% for 21 Mrad. When a large dose of γ -irradiation (300 Mrad) was used, the conversion of initial PtCl₆²⁻⁻ increased to 100% but the π -complex formed decomposed partially with deposition of platinum metal. Complex 1 has previously been prepared in thermal [1] and photo-induced [2a] reactions. Complex 1 was also prepared by the reaction of PtCl₆²⁻⁻ with hex-1-ene induced by γ -irradiation (20 Mrad, yield 27%). γ -Irradiation of a solution of PtCl₆²⁻⁻ and styrene in MeCO₂H (10 Mrad) afforded the complex π -(styrene)PtCl₂ py in 10% yield.

Analogously, γ -irradiation of a solution of H₂PtCl₆ · 6H₂O (0.1 g) and anisole (0.2 ml) in MeCO₂H (1.2 ml) for 4 h (24 Mrad) at 50°C yielded a σ -aryl complex of platinum(IV) which was isolated in the form [MeOC₆H₄PtCl₄NH₃]NH₄ (2) (yield 11%) after chromatography on silica gel containing ammonia. The reaction proceeded selectively and more than 80% of the initial hexachloroplatinic acid could be recovered from the reaction mixture. The yield of complex 2 linearly increased with increasing dose of γ -irradiation. In the thermally induced interaction at 50°C the yield of 2 after 4 h was less than 1.5%. The NMR spectra indicate that, similar to the photoinduced reaction [2] and in contrast to the thermally induced interaction [3], the *para*-platinated isomer of 2 (>95%) was formed in the reaction induced by γ -irradiation and no *para*-meta isomerization occurred in the course of the reaction. The yield of the σ -aryl complex of platinum(IV) in an analogous reaction with phenol (24 Mrad) was 28%. The relative rates of γ -induced platination of phenol and anisole determined using a competitive method (analysis by ¹H NMR), were 2.3 and 1.0, respectively. The reaction of PtCl₆²⁻ with aromatics appears to be the first example of 'electrophilic' substitution in aromatic compounds induced by γ -irradiation.

Light- [2] or γ -irradiation of a solution of H₂PtCl₆ · H₂O and anisole in MeCO₂H at 77 K gave an ESR spectrum with a *g*-value of ~2.4, which is in good agreement with the *g*₁-values for low-spin platinum(III) complex ions produced by photolysis or γ -radiolysis of platinum(IV) and platinum(II) complexes [4]. There were also signals in the region $g \sim 2.0$ due to organic radicals.

One could assume that the first stage of the γ -induced (as well as photoinduced [2]) reactions of organic compounds is electron transfer [5] and formation of the ion radical pair $[RH]^{+}$ $[Pt^{III}Cl_{2}^{2-}]$. If R = Ar, this ion radical pair then transforms into a Wheland-type complex, which after proton elimination gives a σ -aryl complex of platinum(IV). The non-chain mechanism of formation of σ -aryl complexes of platinum(IV) may be termed as $S_E 2e.t.$ (electrophilic substitution with a crucial associative step and involving an electron transfer step). The reaction with saturated hydrocarbons $(\mathbf{R} = \mathbf{Alk})$ appears to proceed via the formation of a radical R[•] and complex $Pt^{III}Cl_{s}^{2-}$, which could be produced by the decay of the cation-radical $RH^{+} \rightarrow R^{-} + H^{+}$ (simultaneous oxidation of alkane and extrusion of proton are also probable.) The radical R^{\cdot} and Pt^{III}Cl₅²⁻ react in a solvent cage to afford a σ -alkyl complex of platinum(IV) or a carbocation \mathbf{R}^+ and a platinum(II) complex. Such a mechanism of substitution at a saturated carbon atom to form a σ -alkyl complex of platinum(IV) may be denoted the $S_{\rm E}$ 1e.t. mechanism (the crucial dissociative step). Radicals R[•] may also be produced in the reaction of Cl^{*} (formed by γ -induced homolysis: PtCl₆²⁻ \rightarrow $Pt^{\text{III}}Cl_{2}^{2-} + Cl^{*})$ with alkanes: RH + Cl^* \rightarrow R^{*} + HCl. Finally, elimination of the β -hydrogen from the alkyl chain of the σ -alkyl complex of platinum(IV) [2a] or from the carbocation R^+ leads to the formation of the π -olefin complex of platinum(II). Radicals R^{\cdot} may also be oxidized with platinum(IV) to produce R⁺ and a platinum(III) complex.

Acknowledgement. The authors wish to thank Prof. A.E. Shilov for his interest in this work and for helpful discussions.

References

- G.V. Nizova, J.V.Z. Krevor, A.N. Kitaigorodskii and G.B. Shul'pin, Izv. Akad. Nauk SSSR, Ser. Khim., (1982) 2805.
- (a) G.B. Shul'pin, G.V. Nizova and A.E. Shilov, J. Chem. Soc., Chem. Commun., (1983) 671;
 (b) G.B. Shul'pin, G.V. Nizova, A.E. Shilov, A.T. Nikitaev, and M.V. Serdobov, Izv. Akad. Nauk SSSR, Ser. Khim., in press.

- 3 G.B. Shul'pin, A.E. Shilov, A.N. Kitaigorodskii and J.V.Z. Krevor, J. Organomet. Chem., 201 (1980) 319; G.B. Shul'pin, J. Organomet. Chem., 212 (1981) 267; G.B. Shul'pin and A.T. Nikitaev, Izv. Akad. Nauk SSSR, Ser. Khim., (1981) 1416; G.B. Shul'pin, Zh. Obshch. Khim., 51 (1981) 2100.
- 4 I.I. Blinov and G.A. Shagisultanova, Koord., Khim., 8 (1982) 191; T. Krigas and M. Roges, J. Chem. Phys., 55 (1971) 3035; H.M. Khan, W.L. Waltz, J. Lilie and R.J. Woods, Inorg. Chem., 21 (1982) 1489; N.N. Zheligovskaya, N.A. Chernova, R.G. Kileev and V.I. Spitsyn, Koord. Khim., 9 (1983) 666.
- 5 M. Chanon and M.L. Tobe, Angew. Chem., 94 (1982) 27; W. Lau, J.C. Huffman and J.K. Kochi, J. Am. Chem. Soc., 104 (1982) 5515; S. Fukuzumi and J.K. Kochi, Bull. Chem. Soc. Jpn., 56 (1983) 969.

Erratum

Metal clusters in catalysis. The reactivity of alkyne- and vinylidene-substituted homo- and hetero-metallic clusters towards molecular hydrogen in homogeneous conditions; by M. Castiglioni, R. Giordano and E. Sappa (J. Organomet. Chem., 258 (1983) 217-234)

Page 231, line 5 should read:

case for cluster 4. A possible explanation of this behaviour might be that when

Page 233, line 3 of Conclusive remarks should read:

selectivities different from those observed for alkynes bound to bimetallic derivatives.

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 265, No. 1

AUTHOR INDEX

Anand, B.N., 45	Fajardo, M., 35	Liehr, G., 95
Antiñolo, A., 35 Arumugam, S., 73 Bandara, B.M.R., C6 Battioni, JP., 53	Gerrard, N.D., 9 Górecki, P., 1 Grundy, K.R., 77 Guérin, P., 53	McMahon, I.J., 107 Manning, P.J., 87 Mansuy, D., 53 Mullin, J.B., 9.
Bellon, P.L., 65 Birch, A.J., C6	Guryanova, E.N., 27	Nizova, G.V., C12
Bocelli, G., C9 Catellani, M., C9	Herrmann, W.A., C1 Holliday, A.K., 9	Olifirenko, I.V., 27 Otero, A., 35
Chernoplekova, V.A., 27 Chiusoli, G.P., C9 Chu, S.S.C., 45	Jenkins, J., 77 Jones, A.C., 9	Rohrmann, J., C1 Romm, I.P., 27 Rosenstein, R.D., 45
Clark, H.C., 107 Clegg, W., 17	Kapoor, P.N., 107 Kataev, E.G., 27	Royo, P., 35
Cole-Hamilton, D.J., 9 Czech, B., 65	Kataev, L.G., 27 Kataeva, L.M., 27 Khetrapal, C.L., 73 Klingebiel, U., 17	Scatturin, V., 65 Schäfer, A., C1 Serdobov, M.V., C12
Deeming, A.J., 87 Demartin, F., 65 Dupré, D., 53	Kunwar, A.C., 73 Kuran, W., 1	Sheldrick, G.M., 17 Shul'pin, G.B., C12 Stalke, D., 17 Szucsányi, G., 95
Ellermann, J., 95	Larocca, S., C9 Lattman, M., 45	Troitsky, V.V., 27